DONOVAN E. WALKER (ISB No. 5921) Idaho Power Company 1221 West Idaho Street (83702) P.O. Box 70 Boise. Idaho 83707 Telephone: (208) 388-5317 Facsimile: (208) 388-6936 dwalker@idahopower.com

Attorney for Idaho Power Company

BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

)

)

)

IN THE MATTER OF THE PETITION OF IDAHYDRO, SHOROCK HYDRO, INC., J.R. SIMPLOT COMPANY, AND RENEWABLE ENERGY COALITION FOR) MODIFICATION OF THE 90/110 PERFORMANCE BAND AND CALCULATION OF OPERATION AND MAINTENANCE CHARGES FOR PURPA **QUALIFYING FACILITIES**

CASE NO. IPC-E-18-07

IDAHO POWER COMPANY'S ANSWERS AND RESPONSES TO J.R. SIMPLOT'S FIRST INTERROGATORIES, REQUESTS FOR ADMISSION, AND REQUESTS FOR PRODUCTION TO IDAHO POWER COMPANY

COMES NOW, Idaho Power Company ("Idaho Power" or "Company"), and in answer and response to J.R. Simplot's First Interrogatories, Requests for Admission, and Requests for Production to Idaho Power Company dated April 25, 2018, herewith submits the following information:

INTERROGATORIES

INTERROGATORY NO. 1: Identify the employees at Idaho Power who are responsible for forecasting the output of hydro, wind, solar and other QFs for month-ahead and day-ahead power supply planning purposes. List the employees in descending order of decision-making hierarchy and list the job title of each such employee.

ANSWER TO INTERROGATORY NO. 1: Please see Idaho Power's response to Interrogatory No. 2.

The Answer to this Interrogatory is sponsored by Michael Darrington, Energy Contracts Leader, Idaho Power Company.

INTERROGATORY NO. 2: Identify the employees at Idaho Power who are responsible for forecasting the output of Idaho Power's company-owned hydro, wind, solar and other generation projects for month-ahead and day-ahead power supply planning purposes. List the employees in descending order of decision-making hierarchy and list the job title of each such employee.

ANSWER TO INTERROGATORY NO. 2: Estimates of generation on a monthly basis from Idaho Power-owned projects used to determine long-term estimated monthly energy deliveries to Idaho Power are derived from the monthly Operating Plan as part of the Company's risk management process. The process used to develop the Operating Plan forecast is a multi-step, coordinated process that involves a number of separate analyses prepared by multiple subject matter experts within the Company. The Operating Plan forecast reflects an economic dispatch of the Company's resources on a monthly basis segmented into Heavy Load ("HL") and Light Load ("LL") hours. The following is a summary describing the development of the Operating Plan and the employees whose responsibilities include the development of the listed components.

1. Market Price Forecast – The market price forecast is the starting point for the economic dispatch of Company resources. To start, the 18-month load forecast is divided into monthly HL and LL hours. Two plans are then created: a HL forecast and a LL forecast. Hub prices are from the Mid-Columbia (Mid-C) and Palo Verde energy markets and are then developed based upon the forward price curves published by the Intercontinental Exchange ("ICE"). Border prices are at the edge of Idaho Power's system and are based on Hub prices, adjusted

for seasonality and transmission to and from the Company's system. Prepared by Andy Husted, Senior Risk Analyst; Reviewed by Jill Sprenger, Risk Manager.

- Resource Stack Development Once the market price forecast is created, the resource stack is developed. This process is followed for both the HL and LL forecast.
 - a. Public Utility Regulatory Policies Act of 1978 ("PURPA") and Purchased *Power Agreements* – The bottom of the "resource stack" begins with the Company's must run resources: PURPA and Purchased Power Agreements. Idaho Power's cogeneration and small power production ("CSPP") forecast, which includes all qualifying facility ("QF") projects under contract, is developed for each project based on a number of factors including contract estimated generation amounts, most recent 12month history, five-year rolling average, project-adjusted estimated net energy amounts, and any previous or current adjustments. Generally, the starting point is the rolling five-year historical average of monthly generation (or shorter if the project has operated less than five years). If a project has operated less than one year, the generation estimates from the project's energy sales agreement ("ESA") are used. The forecasted generation is adjusted as necessary due to information known to Idaho Power or by changes in adjusted monthly net energy amounts provided by the projects. The goal is to create the most accurate estimate as possible of the actual energy deliveries from each project. Prepared by Michael

Darrington, Energy Contracts Leader; Reviewed by Mike Polito, Power Supply Operations Senior Manager.

- b. Gas The dispatch price for each unit is determined using gas prices, including transportation and operations and maintenance ("O&M") charges, and ambient monthly temperature and unit efficiencies. The dispatched prices are compared to the market price (the border prices), and modified to include transmission wheeling costs. If a unit is economical, it is shown as being available. Later in the process, the gas units are compared to the coal units to provide the most economical dispatch of resources. Prepared by Darren Anderson, Term Transaction Specialist II; Reviewed by Eric Race, Gas Transaction Leader.
- c. Hydro Next, the hydro model is run. The hydro model optimizes the use of water during individual months of the water year. The model uses updated inflows, market prices, and an updated position (surplus or deficit) for all components except coal. The model includes any unit constraints, reservoir levels, flood requirements and minimum flow requirements, maintenance schedules, and unit generation capacities. The results of the hydro model are added to the resource stack and an updated position (surplus or deficit) is passed to the coal forecast. Prepared by Frank Gariglio, Senior Engineer; Reviewed by Tim Brewer, Principal Engineer, and Jeff Connor, Engineering Leader.
- d. *Coal* Following the hydro model run, the coal generation forecast is prepared. The system HL and LL energy positions are determined using

the current month portfolio. The dispatch price for each plant may be based on an incremental price of coal or an average price of coal in inventory, depending on forecast burn levels and contract flexibility existing at each plant. The dispatch price for each plant is calculated and compared to the market price forecast, which is modified to include transmission wheeling costs. Each unit that is economic and included in the production forecast reduces the system position prior to the next unit being evaluated. The Bridger and Valmy unit forecasts include estimates of operations to provide operational system reliability and flexibility. The reliability energy forecast is not evaluated via the economic dispatch process. The reliability forecast forms the minimum output levels of the units and is the starting place for the economic unit dispatch process described above. The results of the coal generation forecast are added to the resource stack. Prepared by Elizabeth Finley, Senior Mine Operations Coordinator; Reviewed by John Carstensen, Joint Projects Leader.

e. Load Forecast – Once the portfolio of resources has been developed according to an economic dispatch, it is compared to the system load forecast. At this point, any new hedging transactions are added to the resource stack. They are valued at the actual hedge price at that time, not the market price. The resulting surplus or deficit position translates to surplus sales or purchased power using a forward market curve.

Prepared by Barr Smith, Lead Planning Analyst; Reviewed by Jordan Prassinos, Load Research and Forecasting Leader.

- f. Hydro Model Rerun The hydro model is run again prior to the final portfolio using updated gas and coal forecasts to optimize the water with the constraints. Because the constraints are fairly severe in most months, the rerun of the hydro model typically does not significantly change the outcome of the hydro positions in the portfolio; however, significant changes in the coal forecast can change the outcome of the portfolio. Prepared by Karen Flynn, Lead Planning Analyst, and Phil DeVol, Lead Planning Analyst; Reviewed by Rick Haener, Power Supply Planning Leader.
- 3. Final Portfolio The completion of the resource stack signals the final portfolio to be used for the Operating Plan. Prepared by Karen Flynn, Lead Planning Analyst, and Scott Wright, Lead Planning Analyst; Reviewed by Rick Haener, Power Supply Planning Leader.

Data from the Operating Plan is used by Idaho Power's Load Serving Operations department in the development of short-term forecasts, to determine trends and expectations for energy deliveries on a long-term and near-term basis, including dayahead. Throughout the month, this process compares balance of month purchases and sales with Idaho Power available generation, the CSPP forecast and load forecast to derive a preliminary plan for the day. This process can be performed up to daily if system generation and loads are changing rapidly. Any time the preliminary plan is outside of limits of the balance of the month by amounts as small as 1 megawatt ("MW"), decisions to purchase or sell are made, so the accuracy of the inputs to the process is critical. The preliminary plan is then forwarded to the day-ahead process, where the forecasting process updates the preliminary plan to correct short or long positions, based on three-day trending of average output from generation resources, to estimate expected deliveries for the upcoming day. Actual deliveries from Idaho Power available generation resources, CSPP projects, the latest load forecast, and the latest wind and solar forecasts are all used to determine if the Company is within balancing limits or if orders need to be filled to balance the system. Prepared by Shaun Jensen – Term Balancing Operator, Reviewed by Perry Kerfoot, Day Ahead Balancing Operations Leader.

Generation from wind and solar resources is forecasted using physical and statistical modeling approaches. Idaho Power uses data output from high resolution numeric weather prediction models that the Company runs in its operations. These models are run in one hour incremental output and produce a broad range of meteorological parameters. For wind, once the initial model output is produced, statistical methods use the difference between previous predicted and actual wind speeds to adjust model output parameters. Once model output has been refined, it is fed into an established power curve designed for each wind project to produce the generation forecast. The statistical adjustments are applied for the first six hours of the forecast in a weighted manner so the first hour receives the most adjustment and the sixth hour receives the least adjustment.

For solar generation forecasting, Idaho Power uses historical solar intensity observations and forecasts to derive a function that computes future solar intensity for a given time horizon from a set of forecasted weather metrics. The model formulas are based on linear least squares regression. Once the initial model output is produced, statistical methods use the difference between previous predicted and actual solar intensity to adjust model output parameters. The statistical adjustments are applied for the first four hours of the forecast in a weighted manner so the first hour receives the most adjustment and the fourth hour receives the least adjustment. Prepared by the Power Supply Technical Applications Support group, Ron Tarkowski, Technical Application Support Leader, and Mel Kunkel, Meteorologist.

The Answer to this Interrogatory is sponsored by Michael Darrington, Energy Contracts Leader, Idaho Power Company.

INTERROGATORY NO. 3: Identify the employees at Idaho Power who receive the monthly adjusted estimated net energy amounts supplied by QFs with the 90/110 Performance Band contract provision. List the employees in descending order of decision-making hierarchy and list the job title of each such employee.

ANSWER TO INTERROGATORY NO. 3: The monthly estimated net energy amounts supplied by QFs that are submitted as directed in each QF's ESA are received by the Energy Contracts team consisting of Michael Darrington, Energy Contracts Leader, Jerry Jardine, Lead Energy Contracts Coordinator, and Toby Wilson, Lead Energy Contracts Coordinator.

The Answer to this Interrogatory is sponsored by Michael Darrington, Energy Contracts Leader, Idaho Power Company.

INTERROGATORY NO. 4: Identify the employees at Idaho Power engaged in accounting of operations and maintenance expenses and assessment of operation and maintenance charges to interconnection customers that take service under FERC-jurisdictional interconnections under the Open Access Transmission Tariff's Large Generator Interconnection Agreement and Small Generator Interconnection Agreement. List the employees in descending order of decision-making hierarchy and list the job title of each such employee.

<u>ANSWER TO INTERROGATORY NO. 4</u>: The Financial Accounting team is responsible for calculating and assessing O&M charges to interconnection customers that take service under FERC-jurisdictional interconnections. The employees involved in this process in descending order of decision-making hierarchy are Aubrae Sloan, Accounting Manager, Amber Moody, Accountant II, and Irene Fewkes, Accountant II.

The Answer to this Interrogatory is sponsored by Aubrae Sloan, Accounting Manager, Idaho Power Company.

INTERROGATORY NO. 5: Identify the employees at Idaho Power engaged in accounting of operations and maintenance expenses and assessment of operation and maintenance charges to interconnection customers that take service under Schedule 72. List the employees in descending order of decision-making hierarchy and list the job title of each such employee.

ANSWER TO INTERROGATORY NO. 5: The Financial Accounting team is responsible for calculating and assessing O&M charges to interconnection customers that take service under Schedule 72. The employees involved in this process in descending order of decision-making hierarchy are Aubrae Sloan, Accounting Manager, Amber Moody, Accountant II, and Irene Fewkes, Accountant II.

The Answer to this Interrogatory is sponsored by Aubrae Sloan, Accounting Manager, Idaho Power Company.

INTERROGATORY NO. 6: Explain how Idaho Power uses the monthly adjusted estimated net energy amounts supplied by QFs under their energy sales agreements in Idaho Power's month-ahead and day-ahead power supply planning activities. Include examples of specific instances where Idaho Power has adjusted its power supply planning based upon the QF's monthly

adjusted estimated net energy amounts.

ANSWER TO INTERROGATORY NO. 6: Idaho Power's CSPP forecast, which includes all QF projects under contract, is developed for each project based on a number of factors including contract estimated generation amounts, most recent 12-month history, five-year rolling average, project adjusted estimated net energy amounts, and any previous or current adjustments. Generally, the starting point is the rolling five-year historical average of monthly generation, or shorter if the project has operated less than five years. If a project has operated less than one year, the generation estimates from the project's ESA are used. Idaho Power uses the monthly adjusted net energy amounts supplied by QF's to verify information and make adjustments in its preparation of the CSPP forecast. This forecast is used by the Company as an input to its monthly Operating Plan forecast and risk management process, which then is integrated with the Company's day-ahead balancing operations processes.

As described in Idaho Power's answer to Simplot's Interrogatory No. 2, data from the Operating Plan is used by Idaho Power's Load Serving Operations department in the development of short-term forecasts, to determine trends and expectations for energy deliveries on a long-term and near-term basis, including day-ahead. Throughout the month, this process compares balance of month purchases and sales with Idaho Power available generation, any updates to the CSPP forecast, and load forecast to derive a preliminary plan for the day. This process can be performed up to daily if system generation and loads are changing rapidly. Any time the preliminary plan is outside of limits of the balance of the month by amounts as small as 1 MW, decisions to purchase or sell are made, so the accuracy of the inputs to the process is critical. The preliminary plan is then forwarded to the day-ahead process where the forecasting process updates the preliminary plan to correct short or long positions, based on three-day trending of average output from generation resources, to estimate expected deliveries for the upcoming day. Actual deliveries from Idaho Power available generation resources, CSPP projects, the latest load forecast, and the latest wind and solar forecasts are all used to determine if the Company is within balancing limits or if orders need to be filled to balance the system.

The monthly adjusted net energy amounts are used to determine if the Company's monthly forecasted generation is reasonable, or if adjustments should be applied based on updated information from the individual QF's. For example, on April 28, 2016, the Simplot-Pocatello QF provided notice to Idaho Power to change the monthly net energy amount for June 2016, from 5,040,000 kilowatts ("kWh") to 2,181,000 kWh. Based on this adjustment and subsequent energy deliveries during June, Idaho Power reduced the amount of expected energy deliveries from the Simplot-Pocatello project in its CSPP forecast. In another example, multiple times throughout the past year, the majority of solar QF projects that came online in late 2016 and 2017 submitted adjusted monthly net energy amounts that were generally reductions in estimated generation from the values contained in the projects' ESAs. Idaho Power has

reduced the forecast generation for solar generation in its CSPP forecasts to more closely align with the adjusted estimates provided by the projects.

The Answer to this Interrogatory is sponsored by Michael Darrington, Energy Contracts Leader, Idaho Power Company.

INTERROGATORY NO. 7: Explain how Idaho Power forecasts the energy deliveries made under ESAs that do not contain the 90/110 Performance Band. Include description of all differences between the practices used to forecast energy deliveries from hydro QFs providing monthly adjusted estimated net energy amounts under the 90/110 Performance Band and hydro QFs that do not provide monthly adjusted estimated net energy amounts under the estimated net energy amounts under the 90/110 Performance Band.

ANSWER TO INTERROGATORY NO. 7: Please see Idaho Power's Response to Simplot's Interrogatory No. 6. The process is the same for QF projects that have ESAs without 90%/110% requirements, except that projects without 90%/110% provisions lack the additional information provided by projects that supply adjusted amounts, which reduces the accuracy of the CSPP forecast as future adjustments may not be recognized in the forecast and significant changes to generation amounts may not be known to Idaho Power until actual historical information is collected and included.

The Answer to this Interrogatory is sponsored by Michael Darrington, Energy Contracts Leader, Idaho Power Company.

INTERROGATORY NO. 8: For intermittent (wind and solar) QFs that operate under a mechanical availability guarantee in lieu of the 90/110 Performance Band, explain how Idaho Power forecasts generation from such QFs without receiving monthly adjusted estimated net energy amounts supplied by the QF.

ANSWER TO INTERROGATORY NO. 8: Please see Idaho Power's response to Simplot's Interrogatory No. 6. In addition, generation from wind and solar resources is forecasted using physical and statistical modeling approaches. Idaho Power uses data output from high resolution numeric weather prediction models that the Company runs in its operations. These models are run in one hour incremental output and produce a broad range of meteorological parameters.

For wind, once the initial model output is produced, statistical methods use the difference between previous predicted and actual wind speeds to adjust model output parameters. Once model output has been refined, it is input into an established power curve designed for each wind project to produce the generation forecast. The statistical adjustments are applied for the first six hours of the forecast in a weighted manner so the first hour receives the most adjustment and the sixth hour receives the least adjustment.

For solar generation forecasting, Idaho Power uses historical solar intensity observations and forecasts to derive a function that computes future solar intensity for a given time horizon from a set of forecasted weather metrics. The model formulas are based on linear least squares regression. Once the initial model output is produced, statistical methods use the difference between previous predicted and actual solar intensity to adjust model output parameters. The statistical adjustments are applied for the first four hours of the forecast in a weighted manner so the first hour receives the most adjustment and the fourth hour receives the least adjustment.

The Answer to this Interrogatory is sponsored by Michael Darrington, Energy Contracts Leader, Idaho Power Company.

INTERROGATORY NO. 9: Explain why Idaho Power does not use the formulabased operation and maintenance charge in Schedule 72 to assess interconnection costs to customers that take service under FERC-jurisdictional interconnections under the Open Access Transmission Tariffs Large Generator Interconnection Agreement and Small Generator Interconnection Agreement.

ANSWER TO INTERROGATORY NO. 9: The Large Generator Interconnection Agreement states, "Operating and Maintenance Expenses. ... Interconnection Customer shall be responsible for all reasonable expenses including overheads, associated with (1) owning, operating, maintaining, repairing, and replacing Interconnection Customer's Interconnection Facilities; and (2) operation, maintenance, repair and replacement of Transmission Provider's Interconnection Facilities." Similarly, the Small Generator Interconnection Agreement states, "The Interconnection Customer shall be responsible for its share of all reasonable expenses, including overheads, associated with (1) owning, operating, maintaining, repairing, and replacing its own Interconnection Facilities; and (2) operating, maintaining, repairing, and replacing the Transmission Provider's Interconnection Facilities." This language does not mandate, nor prohibit, the use of either actual costs or the "formula-based operation and maintenance charge in Schedule 72" as referenced in the above question.

The Answer to this Interrogatory is sponsored by Donovan E. Walker, Lead Counsel, Idaho Power Company.

INTERROGATORY NO. 10: Is Idaho Power aware of any other utility in the United States that assesses operation and maintenance expenses to interconnection customers based on a formula that assesses a percentage of the initial construction costs similar to the structure of the formula in Schedule 72. If so, please identify the utility, explain the structure of its charge, and location of information available to Idaho Power on this topic.

ANSWER TO INTERROGATORY NO. 10: No. Idaho Power does not know if any other utility does, or does not, have similar Operation and Maintenance Obligations and Expenses provisions as those contained in Idaho Power's Schedule 72.

The Answer to this Interrogatory is sponsored by Donovan E. Walker, Lead Counsel, Idaho Power Company.

REQUESTS FOR ADMISSION

REQUEST FOR ADMISSION NO. 1: Admit or deny that Idaho Power does not use the monthly adjusted estimated net energy amounts supplied by QFs under their energy sales agreements for purposes of balancing load and resources on its system on a day-ahead basis.

RESPONSE TO REQUEST FOR ADMISSION NO. 1: The *monthly* adjusted estimated net energy amount estimates are relevant and used for estimates on a *monthly* basis. As described in Idaho Power's Response to Simplot's Interrogatory No. 2, there is an entire process of estimating generation from the month-ahead, through the day-ahead, and into real time required to serve load and balance the system, for which a QF's monthly estimates are used.

REQUEST FOR ADMISSION NO. 2: Admit or deny that Idaho Power does not use the monthly adjusted estimated net energy amounts supplied by QFs under their energy sales agreements for purposes of balancing load and resources on its system on a week-ahead basis.

RESPONSE TO REQUEST FOR ADMISSION NO. 2: Deny. The *monthly* adjusted estimated net energy amount estimates are relevant and used for estimates on a *monthly* basis. As described in Idaho Power's Response to Simplot's Interrogatory No. 2, there is an entire process of estimating generation from the month-ahead, through the day-ahead, and into real time required to serve load and balance the system, for which a QF's monthly estimates feed are used.

REQUEST FOR ADMISSION NO. 3: Admit or deny that Idaho Power does not use the monthly adjusted estimated net energy amounts supplied by QFs under their energy sales agreements for purposes of balancing load and resources on its system on a two-week-ahead basis.

RESPONSE TO REQUEST FOR ADMISSION NO. 3: Deny. The *monthly* adjusted estimated net energy amount estimates are relevant and used for estimates on a *monthly* basis. As described in Idaho Power's Response to Simplot's Interrogatory No. 2, there is an entire process of estimating generation from the month-ahead, through the day-ahead, and into real time required to serve load and balance the system, for which a QF's monthly estimates are used.

REQUEST FOR ADMISSION NO. 4: Admit or deny that Idaho Power does not use the monthly adjusted estimated net energy amounts supplied by QFs under their energy sales agreements for purposes of power supply planning on its system on a month-ahead basis.

RESPONSE TO REQUEST FOR ADMISSION NO. 4: Deny. The *monthly* adjusted estimated net energy amount estimates are relevant and used for estimates on a *monthly* basis. As described in Idaho Power's Response to Simplot's Interrogatory No. 2, there is an entire process of estimating generation from the month-ahead, through the day-ahead, and into real time required to serve load and balance the system, for which a QF's monthly estimates are used.

REQUEST FOR ADMISSION NO. 5: Admit or deny that Idaho Power assesses interconnection operations and maintenance expenses to interconnection customers that take service under FERC-jurisdictional interconnections under the Open Access Transmission Tariffs Large Generator Interconnection Agreement and Small Generator Interconnection Agreement on a basis of actual costs incurred.

RESPONSE TO REQUEST FOR ADMISSION NO. 5: Deny. The Large Generator Interconnection Agreement states, "Operating and Maintenance Expenses. ... Interconnection Customer shall be responsible for all reasonable expenses including overheads, associated with (1) owning, operating, maintaining, repairing, and replacing Interconnection Customer's Interconnection Facilities; and (2) operation, maintenance, repair and replacement of Transmission Provider's Interconnection Facilities." Similarly, the Small Generator Interconnection Agreement states, "The Interconnection Customer shall be responsible for its share of all reasonable expenses, including overheads, associated with (1) owning, operating, maintaining, repairing, and replacing its own Interconnection Facilities; and (2) operating, maintaining, repairing, and replacing the Transmission Provider's Interconnection Facilities." This language does not mandate, nor prohibit, the use of either actual costs or the "formula-based operation and maintenance charge in Schedule 72" as referenced in Simplot's Interrogatory No. 9 in this case.

REQUEST FOR ADMISSION NO. 6: Admit or deny that Idaho Power does not assess interconnection operations and maintenance expenses to interconnection customers that take service under FERC-jurisdictional interconnections under the Open Access Transmission Tariffs Large Generator Interconnection Agreement and Small Generator Interconnection Agreement on the basis of the formula contained in Schedule 72.

RESPONSE TO REQUEST FOR ADMISSION NO. 6: Deny. The Large Generator Interconnection Agreement states, "**Operating and Maintenance Expenses**.... Interconnection Customer shall be responsible for all reasonable expenses including overheads, associated with (1) owning, operating, maintaining, repairing, and replacing Interconnection Customer's Interconnection Facilities; and (2) operation, maintenance, repair and replacement of Transmission Provider's Interconnection Facilities." Similarly, the Small Generator Interconnection Agreement states, "The Interconnection Customer shall be responsible for its share of all reasonable expenses, including overheads, associated with (1) owning, operating, maintaining, repairing, and replacing its own Interconnection Facilities; and (2) operating, maintaining, repairing, and replacing the Transmission Provider's Interconnection Facilities." This language does not mandate, nor prohibit, the use of either actual costs or the "formula-based operation and maintenance charge in Schedule 72" as referenced in Simplot's Interrogatory No. 9 in this case.

REQUESTS FOR PRODUCTION

REQUEST FOR PRODUCTION NO. 1: Please provide a list of all QFs that supplied power to Idaho Power at any time after January 1, 2008 or that have energy sales agreements but have not yet started to make deliveries. For each of these QFs, please provide the following information: name, contract capacity, nameplate capacity (if known and different than contract capacity), primary fuel (e.g, hydro, wind, solar, geothermal, cogeneration, etc.), point of interconnection, commercial operation date, date of last generation (if not still in operation) and whether the energy sales agreement contains the 90/110 Performance Band.

RESPONSE TO REQUEST FOR PRODUCTION NO. 1: The following table provides the requested information.

Project Name	Contract/ Nameplate Capacity	Facility Type	Point of Interconnection		Operation Date	Date of Last Generation	ESA Contains 90/110
American Falls Solar II, LLC	20.00	Solar	-112.7439	42.8270	3/1/2017		Yes
American Falls Solar, LLC	20.00	Solar	-112.7439	42.8270	3/1/2017		Yes
Arena Drop	0.45	Hydro	-116.9613	43.7193	9/1/2010		Yes
B6 Anaerobic Digester	2.28	Biomass	-114.6234	42.7156	8/1/2010		Yes
Baker City Hydro	0.24	Hydro	-117.8541	44.7672	9/1/2015		No
Baker Solar Center	15.00	Solar	-117.7553	44.7155	Not Online		Yes
Bannock County Landfill	3.20	Biomass	-112.3730	42.7830	5/1/2014		Yes
Barber Dam	3.70	Hydro	-116.1213	43.5613	4/10/1989		No
Bennett Creek Wind Farm	21.00	Wind	-115.4776	43.0518	12/15/2008		Yes
Benson Creek Windfarm	10.00	Wind	-117.3440	44.3670	3/23/2017		No
Bettencourt Dry Creek Biofactory	2.25	Biomass	-114.2213	42.4256	5/3/2010		Yes
Big Sky West Dairy Digester (DF-AP #1,							
LLC)	1.50	Biomass	-114.7982	42.8523	1/15/2009		Yes
Birch Creek	0.05	Hydro	-114.8984	42.8534	11/1/1984		No
Black Canyon #3	0.14	Hydro	-114.7279	43.0340	4/16/1984		No
Black Canyon Bliss Hydro	0.03	Hydro	-114.9532	42.9051	10/8/2015		Yes
Blind Canyon	1.63	Hydro	-114.8223	42.6998	12/16/2014		Yes
Box Canyon	0.36	Hydro	-114.8253	42.7003	2/11/1984		No
Briggs Creek	0.60	Hydro	-114.8210	42.6775	10/10/1985		No
Brush Solar	2.75	Solar	-118.2057	44.4664	Not Online		No
Burley Butte Wind Park	21.30	Wind	-113.9125	42.5003	2/1/2011		No
Bypass	9.96	Hydro	-114.0586	42.5589	6/18/1988		No
Camp Reed Wind Park	22.50	Wind	-115.0555	42.8181	12/31/2010		No
Canyon Springs	0.13	Hydro	-114.4772	42.6056	10/1/1984		No
Cassia Wind Farm LLC	10.50	Wind	-115.0131	42.8777	3/24/2009		Yes
Cedar Draw	1.55	Hydro	-114.6585	42.6267	6/1/1984		No
Clear Springs Trout	0.52	Hydro	-114.8281	42.7049	11/2/1983		No

	Contract/					Date of	ESA
	Nameplate	Facility	Point of		Operation	Last	Contains
Project Name	Capacity	Туре	Intercon	nection	Date	Generation	90/110
CO-GEN CO	10.00	Biomass	-118.7144	44.4620	7/1/2011	12/31/2011	No
Cold Springs Windfarm	23.00	Wind	-115.4022	43.0359	12/8/2012		No
Crystal Springs	2.44	Hydro	-114.5495	42.6366	4/1/1986		No
Curry Cattle Company	0.22	Hydro	-114.5606	42.5444	6/16/1983		Yes
Desert Meadow Windfarm	23.00	Wind	-115.4408	43.0539	12/8/2012		No
Dietrich Drop	4.50	Hvdro	-114.2682	42.8361	8/29/1988		No
Double A Digester Project	4.50	Biomass	-114.4655	42.8571	1/1/2012		Yes
Durbin Creek Windfarm	10.00	Wind	-117.3230	44.3530	3/23/2017		No
Eightmile Hydro Project	0.36	Hvdro	-113.4872	44,7361	10/28/2014		Yes
Flk Creek	2.00	Hydro	-116.3162	45.2178	5/16/1986		No
Ealls River	9.10	Hydro	-111.3367	44.0623	8/22/1993		No
Fargo Drop Hydroelectric	1.27	Hydro	-116.8997	43.6250	4/28/2013		Yes
Faulkner Banch	0.87	Hydro	-115 0255	42 9523	8/15/1987		No
Fighting Creek Landfill Gas to Energy	0.07	ilyuro	110.0200	12.5525	0,10,100,		
Station	3.06	Biomass	-116 9300	47 5320	4/1/2014		No
Fisheries Dev	0.26	Hydro	-11/ 8739	12 8230	7/3/1000		No
Fossil Gulch Wind	10.50	Wind	-114.0755	42.8235	9/30/2005		Voc
Goo Bop #2	10.30	Hydro	114.9452	42.0300	3/30/2003 11/15/1096		No
Geo-Bon #2 Colden Valley Wind Pork	12.00	Nind	-114.4050	42.9044	2/1/2011		No
Golden Valley Wind Park	12.00	VVIIIU	-115.9069	42.4455	2/1/2011		No
Grand View PV Solar Two	80.00	Solar	-110.0100	43.0250	12/15/2016		NO No
Grove Solar Center, LLC	6.00	Solar	-117.3840	43.9350	10/22/2016		NO No
Halley Cspp	0.06	Hyaro	-114.3142	43.5562	6/25/1985		INO No
Hammett Hill Windfarm	23.00	wind	-115.4604	43.0113	12/8/2012		NO
Hazelton A	8.10	Hydro	-114.0699	42.5870	3/1/2011		Yes
Hazelton B	7.60	Hydro	-114.0930	42.6051	5/8/1993		NO
Head of U Canal Project	1.28	Hydro	-114.3903	42.7628	6/2/2015		Yes
Hidden Hollow Landfill Gas	3.20	Biomass	-116.2866	43.6981	1/1/2007		Yes
High Mesa Wind Project	40.00	Wind	-115.0286	42.8802	12/27/2012		No
Horseshoe Bend Hydro	9.50	Hydro	-116.2442	43.9047	9/13/1995		No
Horseshoe Bend Wind	9.00	Wind	-111.4107	47.5064	2/28/2006		Yes
Hot Springs Wind Farm	21.00	Wind	-115.4594	43.0287	12/15/2008		Yes
Hyline Solar Center, LLC	9.00	Solar	-116.9870	44.1520	11/19/2016		No
ID Solar 1	40.00	Solar	-116.3193	43.4332	8/16/2016		Yes
Jett Creek Windfarm	10.00	Wind	-117.2740	44.4250	3/23/2017		No
Jim Knight	0.34	Hydro	-114.6089	42.9277	6/10/1985		No
Kasel & Witherspoon	0.90	Hydro	-114.4345	42.5923	3/4/1984		No
Koyle Small Hydro	1.25	Hydro	-114.7956	42. 9 451	4/2/1984		No
Lateral # 10	2.06	Hydro	-114.8905	42.6475	5/4/1985		No
Lemoyne	0.08	Hydro	-114.8839	42.7598	6/23/1985		No
Lime Wind Energy	3.00	Wind	-117.2682	44.4004	12/9/2011		No
Little Wood River Ranch II	1.25	Hydro	-114.5275	42.9617	10/9/2015		Yes
Little Wood Rvr Res	2.85	Hydro	-114.0254	43.4252	2/24/1985		No
Littlewood / Arkoosh	0.87	Hydro	-114.5744	42.9604	8/8/1986		No
Low Line Canal	7.97	Hydro	-114.3097	42.4940	5/1/1985		No
Low Line Midway Hydro	2.50	Hydro	-114.3223	42.4911	8/11/2007		Yes
Lowline #2	2.79	Hydro	-114.3796	42.4773	4/29/1988		No
Magic Reservoir	9.07	Hydro	-114.3142	43.2393	6/1/1989		No
Magic Valley	10.00	Thermal	-113.6805	42.6069	11/21/1996	11/21/2016	No
Magic West	10.00	Thermal	-115.2932	42,9539	12/2/1996	12/31/2009	No
Mainline Windfarm	23.00	Wind	-115.4120	43.0481	12/8/2012		No
Malad River	0.62	Hydro	-114.8292	42,8700	5/1/1984		No
Marco Banches	1 20	Hydro	-114 5573	42 6381	8/1/1985		No
MC6 Hydro	2 10	Hydro	-116 2581	42.0001	Not Online		Vac
Mile 28	1 50	Hydro	-11/ 1617	17 7200	6/1/1004		No
Mill Creek Hydroelectric	1.50	Hydro	-117 7627	42.7370	10/1/2011	6/30/2017	No
IVITE CIECK HYUI OCICULIU	0.00	nyuru	-11//02/	40.2001	10/1/2011	0/201/	NU

	Contract/					Date of	ESA
	Nameplate	Facility	Point of		Operation	Last	Contains
Project Name	Capacity	Туре	Intercon	nection	Date	Generation	90/110
Milner Dam Wind	19.92	Wind	-114.0106	42.4740	2/1/2011		No
Mitchell Butte	2.09	Hydro	-117.1555	43.7716	5/18/1989		No
Mora Drop Small Hydroelectric Facility	1.85	Hydro	-116.4727	43.4601	9/15/2006		Yes
Morgan Solar	3.00	Solar	-117.0730	43.9510	Not Online		No
Mt. Home Solar 1, LLC	20.00	Solar	-115.7364	43.1299	3/21/2017		Yes
Mud Creek S and S	0.52	Hydro	-114.8211	42.6055	2/20/2017		Yes
Mud Creek/White	0.21	, Hvdro	-114.7916	42.6518	1/10/1986		No
Murphy Flat Power, LLC	20.00	Solar	-116.4347	43.2131	4/1/2017		Yes
North Gooding Main Hydro	1.30	Hvdro	-114.5534	43.0256	10/8/2016		Yes
Ontario Solar Center	3.00	Solar	-117.0277	44.1133	Not Online		No
Open Range Solar Center, LLC	10.00	Solar	-117.0610	43,7970	10/12/2016		No
Orchard Ranch Solar, LLC	20.00	Solar	-116,2899	43.4695	3/1/2017		Yes
Oregon Trail Wind Park	13.50	Wind	-114 9943	42 8409	1/25/2011		No
Owyhee Dam Cspp	5.00	Hydro	-117 2428	43 6418	8/10/1985		No
Payne's Ferry Wind Park	21.00	Wind	-115 0045	42 8258	12/31/2010		No
Pigeon Cove	1 89	Hydro	-114 5945	42.6298	10/31/1984		No
Pilgrim Stage Station Wind Park	10.50	Wind	-115 0031	42.0303	1/17/2011		No
Pignin Stage Station wind Park	10.50	Riomass	112 5179	42.7555	17/2011		No
Pristing Springs #1	0.40	Diomass	-112.5176	42.9130	E /1 /2016		NO
Printing Springs #2	0.10	Hydro	-114.4079	42.0156	5/1/2015		res
Prospector Windform	0.20	Hydro Mind	-114.5003	42.0215	5/1/2015		Yes
Prospector Windlarm	10.00	vvina	-117.2550	44.4180	3/23/2017		NO
Railroad Solar Center, LLC	4.50	Solar	-117.1020	43.9990	12/6/2016		NO
Reynolds Irrigation	0.26	Hydro	-116.6007	43.3420	5/19/1986		NO
ROCK Creek #1	2.17	Hydro	-114.5368	42.6315	1/16/2018		Yes
ROCK Creek #2	1.90	Hydro	-114.5330	42.6204	4/2/1989		No
ROCK Creek Dairy	4.00	Biomass	-114.6187	42.5057	8/13/2012		Yes
Rockland Wind Farm	80.00	Wind	-112.8750	42.6899	12/9/2011		No
Ryegrass Windfarm	23.00	Wind	-115.4449	43.0417	12/8/2012		No
Sagebrush	0.43	Hydro	-114.5923	42.9472	9/1/1985		No
Sahko Hydro	0.50	Hydro	-114.6383	42.6518	2/17/2011		Yes
Salmon Falls Wind	22.00	Wind	-114.9979	42.6886	4/22/2011		No
Sawtooth Wind Project	22.00	Wind	-115.3939	42.9883	11/1/2011		No
Schaffner	0.53	Hydro	-113.6514	45.0754	8/8/1986		No
Shingle Creek	0.22	Hydro	-116.4035	45.3638	8/1/2017		Yes
Shoshone #2	0.58	Hydro	-114.4539	42.9522	5/1/1996		No
Shoshone CSPP	0.36	Hydro	-114.4531	42.9522	2/16/2017		Yes
Simcoe Solar, LLC	20.00	Solar	-115.9438	43.2831	3/1/2017		Yes
Simplot - Pocatello	15.90	CoGen	-112.5278	42.9093	3/1/2016		Yes
SISW LFGE	5.00	Biomass	-114.0093	42.4663	Not Online		Yes
Snake River Pottery	0.07	Hydro	-114.9185	42.8834	11/30/1984		No
Snedigar	0.54	Hydro	-114.7568	42.6615	1/1/1985		No
Tamarack CSPP	5.00	Biomass	-116.3871	44.9547	6/1/1983		Yes
Tasco - Nampa	2.00	Thermal	-116.5744	43.6056	9/1/2003		No
Tasco - Twin Falls	3.00	Thermal	-114.4316	42.5326	8/11/2001		No
Thousand Springs Wind Park	12.00	Wind	-114.9595	42.8730	1/17/2011		No
Thunderegg Solar Center, LLC	10.00	Solar	-116.9870	43.9350	11/29/2016		No
Tiber Dam	7.50	Hydro	-111.0932	48.3233	6/1/2004		Yes
Trout-Co	0.24	Hydro	-114.9031	42.8398	12/1/1986		No
Tuana Gulch Wind Park	10.50	Wind	-114.9778	42.8406	1/25/2011		No
Tuana Springs Expansion	35.70	Wind	-115.0333	42.8452	5/14/2010		No
Tunnel #1	7.00	Hydro	-117.2411	43.6420	6/8/1993		No
Two Ponds Windfarm	23.00	Wind	-115.4922	43.0252	12/8/2012		No
Vaagen Brothers	4,50	Biomass	-117,9153	48,5469	9/1/1995	11/31/2009	No
Vale Air Solar Center, LLC	10.00	Solar	-117.2580	43.9630	11/9/2016		No
Vale I Solar	3.00	Solar	-117.4432	44.1578	Not Online		No

	Contract/					Date of	ESA
	Nameplate	Facility	Poin	t of	Operation	Last	Contains
Project Name	Capacity	Туре	Intercon	nection	Date	Generation	90/110
White Water Ranch	0.16	Hydro	-114.9100	42.8763	8/1/1985		No
Willow Spring Windfarm	10.00	Wind	-117.2730	44.3820	3/23/2017		No
Wilson Lake Hydro	8.40	Hydro	-114.1860	42.6309	5/18/1993		No
Yahoo Creek Wind Park	21.00	Wind	-114.9991	42.7740	12/31/2010		No

The Response to this Production Request is sponsored by Michael Darrington,

Energy Contracts Leader, Idaho Power Company.

REQUEST FOR PRODUCTION NO. 2: Please provide a list of all hydro projects owned by Idaho Power that generated power at any time between January 1, 2008 and the present. For each of these hydro projects, please provide the following information: name, water source (e.g., Snake River), nameplate capacity, planning capacity (if different than nameplate capacity), water flow at nameplate/planning capacity (in cfs), at site storage (in sfd), upstream storage controlled by Idaho Power (in sfd) and upstream storage controlled by entities other than Idaho Power (in sfd).

RESPONSE TO REQUEST FOR PRODUCTION NO. 2: The following table includes the requested information; however, storage is reported in acre-feet rather than sfd to match standard water management reporting units. The table does not include planning capacity or water flow at planning capacity as Idaho Power does not use a single planning flow or capacity because flows can vary significantly throughout the year. Not all upstream storage is reflected in the table as unreported volume is generally confined to small reservoirs that are privately held.

		Nameplate	Water Flow at	At Site Storage, Idaho Power	At Site Storage, Non-Idaho Power	Upstream Storage, Idaho Power	Upstream Storage, Non- Idaho Power
		Capacity	Nameplate	Controlled	Controlled	Controlled	Controlled
Project	Water Source	(MW)	(cfs)	(ac-ft)	(ac-ft)	(ac-ft)ª	(ac-ft) ^a
American Falls	Snake River	92.34	15,000	44,275	1,628,315	44,275	4,445,855
Milner	Snake River	59.448	5,640	0	34,000	44,275	4,575,055
Twin Falls	Snake River	52.897	4,935	895	0	45,170	4,575,055
Shoshone Falls	Snake River	12.5	876	374	0	45,544	4,575,055
Clear Lakes	Clear Lake	2.5	475	0	0	0	0
Thousand Springs	Thousand Springs	6.8	560	0	0	0	0
Upper Salmon B	Snake River	16.5	6,500	115	0	45,659	4,575,055
Upper Salmon A	Snake River	18	6,500	0	0	45,659	4,575,055
Lower Salmon	Snake River	60	16,000	4,100	0	49,759	4,575,055
Upper Malad	Malad River	8.27	800	0	0	0	222,000
Lower Malad	Malad River	13.5	1,200	0	0	0	222,000
Bliss	Snake River	75	16,800	1,215	0	50,974	4,797,055
C.J. Strike	Snake River	89	15,000	36,800	0	87,774	4,797,055
Swan Falls	Snake River	27.17	15,000	6,745	0	94,519	4,797,055
Cascade	NF Payette River	12.42	2,300	0	653,200	0	653,200
Brownlee	Snake River	585.4	34,700	975,318	0	1,069,837	7,881,295
Oxbow	Snake River	190	26,000	5,200	0	1,075,037	7,881,295
Hells Canyon	Snake River	391.5	30,000	11,800	0	1,086,837	7,881,295

* Reported upstream storage includes the at site storage listed for each project

The Response to this Production Request is sponsored by Frank Gariglio, Senior Engineer, Idaho Power Company.

REQUEST FOR PRODUCTION NO. 3: For each QF listed in the response to Production Request 1 whose energy sales agreement contains the 90/110 Performance Band, please provide a copy of the energy sales agreement and any amendments.

RESPONSE TO REQUEST FOR PRODUCTION NO. 3: The ESA and any amendments containing 90/110 requirements that are listed in the Company's response to Simplot's Production Request No. 1 are publicly available from the Idaho Public Utilities Commission website.

REQUEST FOR PRODUCTION NO. 4: Has Idaho Power allowed any QFs whose energy sales agreements contain the 90/110 Performance Band to adjust their net energy amounts other than as specifically permitted under the express terms of the ESAs and any applicable amendments? If so, please describe the terms allowed for these adjustments and provide any communications with QFs pertaining to these adjustments.

RESPONSE TO REQUEST FOR PRODUCTION NO. 4: No. Any adjustments to net energy amounts as allowed in ESAs have been made in accordance with the terms and conditions of the ESAs; however, certain conditions have occurred where Idaho Power has agreed to allow adjustments to monthly net energy amounts prior to a project's first energy date or operation date. For example, two instances were for solar projects that requested to adjust the monthly estimated net energy amount prior to making any deliveries to Idaho Power under a First Energy Date or an Operation Date. The changes were allowed under the specific circumstances that occurred at the time the requests were made and were specific to the discussions between the parties to the individual ESAs. Please see Attachments 1 and 2 for communications between Idaho Power and the QF's.

Aside from contract provisions for making claims of Seller Declared Suspensions of Energy Deliveries or Force Majeure events, Idaho Power administers and enforces the terms of its ESAs with QFs and does not allow Seller adjustments of estimated net energy amounts that are not permitted according to the schedules and terms in each applicable ESA.

REQUEST FOR PRODUCTION NO. 5: For each non-wind/non-solar QF listed in the response to Production Request 1, please provide monthly generation (in MWh) in Excel spreadsheet format for each month from January 2008 through the most recent month available.

RESPONSE TO REQUEST FOR PRODUCTION NO. 5: Please see the confidential Excel spreadsheet provided on the confidential CD.

REQUEST FOR PRODUCTION NO. 6: For each non-wind/non-solar QF listed in the response to Production Request 1 whose ESA contains the 90/110 Performance Band, please provide the monthly adjusted estimated net energy amounts (in MWh) in Excel spreadsheet format used to determine compliance with the 90/110 Performance Band for each applicable month from January 2008 through the most recent month available.

RESPONSE TO REQUEST FOR PRODUCTION NO. 6: Please see the confidential attachment provided in response to Simplot's Request for Production No. 5.

REQUEST FOR PRODUCTION NO. 7: For each non-wind/non-solar QF listed in the response to Production Request 1 whose ESA contains the 90/110 Performance Band, please indicate whether the monthly adjusted estimated net energy amounts were below (<90%), within (90- 110%) or above (110%) the 90/110 Performance Band for each month from January 2008 through the most recent month available.

RESPONSE TO REQUEST FOR PRODUCTION NO. 7: In order to provide an answer to this request, Idaho Power assumes that this request is asking if actual monthly energy deliveries from non-wind/non-solar QFs were below 90% within 90-110% or above 110% of monthly adjusted net energy amounts, rather than estimated. If this is the case, please see the confidential attachment provided in response to Simplot's Request for Production No. 5.

REQUEST FOR PRODUCTION NO. 8: For each wind or solar QF listed in the response to Production Request 1 whose ESA contains the 90/110 Performance Band, please provide monthly generation (in MWh) in Excel spreadsheet format for each month from January 2008 through the most recent month available.

RESPONSE TO REQUEST FOR PRODUCTION NO. 8: Please see the confidential attachment provided in response to Simplot's Request for Production No. 5.

REQUEST FOR PRODUCTION NO. 9: For each wind or solar Q F listed in the response to Production Request I whose ESA contains the 90/110 Performance Band, please provide the monthly adjusted estimated net energy amounts (in MWh) in Excel spreadsheet format used to determine compliance with the 90/110 Performance Band for each applicable month from January 2008 through the most recent month available.

RESPONSE TO REQUEST FOR PRODUCTION NO. 9: Please see the confidential attachment provided in response to Simplot's Request for Production No. 5.

REQUEST FOR PRODUCTION NO. 10: For each wind or solar QF listed in the response to Production Request 1 whose ESA contains the 90/110 Performance Band, please indicate whether the monthly generation was below (<90%), within (90-110%) or above (110%) the 90/110 Performance Band for each month from January 2008 through the most recent month available.

RESPONSE TO REQUEST FOR PRODUCTION NO. 10: Please see the confidential attachment provided in response to Simplot's Request for Production No. 5.

REQUEST FOR PRODUCTION NO. 11: For each hydro project owned by Idaho Power, please provide monthly generation (in MWh) for each month from January 2008 through the most recent month available.

RESPONSE TO REQUEST FOR PRODUCTION NO. 11: Please see the confidential Excel spreadsheet provided on the confidential CD for the requested information.

REQUEST FOR PRODUCTION NO. 12: Provide total generation (MWh) of all non-intermittent QFs selling to Idaho Power for each hour for the past 3 years, in excel spreadsheet format. For purposes of this request, "intermittent" means wind or solar powered QF.

RESPONSE TO REQUEST FOR PRODUCTION NO. 12: Please see the confidential attachments provided in response to Simplot's Requests for Production Nos. 13 and 14.

REQUEST FOR PRODUCTION NO. 13: Provide total generation (MWh) of all hydropower QFs selling to Idaho Power for each hour for the past 3 years in excel spreadsheet format.

RESPONSE TO REQUEST FOR PRODUCTION NO. 13: Please see the confidential Excel file provided on the confidential CD. The data provided is for each hydro QF that hourly data is available. The data is provided in kWh, as that is the level of measure for generation read at the meter. Negative values represent generation while positive values represent consumption. For other hydro QFs that are not included, meter data is based on end of month customer meter reads.

REQUEST FOR PRODUCTION NO. 14: Provide total generation (MWh) of all QFs that would be categorized as "other" on Idaho Power's published rate schedules selling to Idaho Power in for each hour for the past 3 years excel spreadsheet format.

RESPONSE TO REQUEST FOR PRODUCTION NO. 14: Please see the confidential Excel file provided on the confidential CD. The data provided is for each "other" QF that hourly data is available. The data is provided in kWh, as that is the level of measure for generation read at the meter. Negative values represent generation while positive values represent consumption. For other QFs that are not included, meter data is based on end of month customer meter reads.

REQUEST FOR PRODUCTION NO. 15: For each year since 1990, provide: (i) an accounting of the total amount collected by Idaho Power under the Schedule 72 operation and maintenance charges, and (ii) an accounting of the total cost incurred by Idaho Power for operation and maintenance expenses on QF interconnections.

RESPONSE TO REQUEST FOR PRODUCTION NO. 15: Please see the attached Excel spreadsheet for the total amount collected by Idaho Power under the Schedule 72 O&M charges since 2002. These amounts represent actual revenue recorded to the general ledger, which may be different than the data provided in Simplot's Request for Production No. 16 due to timing differences. General ledger data from 1990 through 2001 is not readily available, due to both a change in general ledger accounting systems used and a change in the level of detail that these transactions were recorded and identified at. Please note that these collections also include O&M charges collected from contracts that were signed prior to the implementation of Schedule 72.

Idaho Power does not separately track actual costs incurred for O&M expenses on QF interconnections. Once these projects are placed into service, they are deemed a part of Idaho Power's plant the same as any other plant that is non-customer funded and the cost of maintaining (or replacing) this equipment is paid for by all Idaho Power customers, with an offsetting revenue credit for the amounts collected through the O&M charge assessed to QF interconnections.

REQUEST FOR PRODUCTION NO. 16: For each QF project listed in the response to Production Request 1, please provide: (i) the amount collected by Idaho Power for Schedule 72 interconnection O&M charges and (ii) the actual interconnection O&M expenses incurred by Idaho Power for each year that the QF project was in operation.

RESPONSE TO REQUEST FOR PRODUCTION NO. 16: Please see the attached Excel spreadsheet for the amount collected by Idaho Power for Schedule 72 interconnection O&M charges. Please note that these collections also include O&M charges collected from contracts that were signed prior to the implementation of Schedule 72.

As stated in Idaho Power's Response to Simplot's Production Request No. 15, Idaho Power does not separately track actual costs incurred for O&M expenses on QF interconnections. Once these projects are placed into service, they are deemed a part of Idaho Power's plant the same as any other plant that is non-customer funded and the cost of maintaining (or replacing) this equipment is paid for by all Idaho Power customers, with an offsetting revenue credit for the amounts collected through the O&M charge assessed to QF interconnections.

REQUEST FOR PRODUCTION NO. 17: Provide an accounting of actual operation and maintenance costs incurred by Idaho Power for the interconnection facilities used for the QF at the J.R. Simplot Company's Don Plant. For each amount incurred by Idaho Power, please include the date, the work performed, equipment supplied, or description of other expenses, with supporting documents.

RESPONSE TO REQUEST FOR PRODUCTION NO. 17: As stated in Idaho Power's Response to Simplot's Production Request No. 15, Idaho Power does not separately track actual costs incurred for O&M expenses on QF interconnections. Once these projects are placed into service, they are deemed a part of Idaho Power's plant the same as any other plant that is non-customer funded and the cost of maintaining (or replacing) this equipment is paid for by all Idaho Power customers, with an offsetting revenue credit for the amounts collected through the O&M charge assessed to QF interconnections.

REQUEST FOR PRODUCTION NO. 18: Provide an accounting of all the payments made by the J.R. Simplot Company to Idaho Power under Schedule 72 organized chronologically for each month J.R. Simplot Company has paid Idaho Power under its ESA and/or Schedule 72 for the QF at the J.R. Simplot Company's Don Plant.

RESPONSE TO REQUEST FOR PRODUCTION NO. 18: Please see the attached Excel spreadsheet for all payments made by J.R. Simplot Company to Idaho Power under Schedule 72 for the Don Plant. Please note that the dates included in the attachment are the generation month that the O&M was assessed, not the dates the payments were made.

REQUEST FOR PRODUCTION NO. 19: Provide an accounting of actual operation and maintenance costs incurred by Idaho Power for the interconnection facilities used for the QF at the Magic Reservoir Hydroelectric Plant. For each amount incurred by Idaho Power, please include the date, the work performed, equipment supplied, or description of other expenses, with supporting documents.

RESPONSE TO REQUEST FOR PRODUCTION NO. 19: As stated in Idaho Power's Response to Simplot's Production Request No. 15, Idaho Power does not separately track actual costs incurred for O&M expenses on QF interconnections. Once these projects are placed into service, they are deemed a part of Idaho Power's plant the same as any other plant that is non-customer funded and the cost of maintaining (or replacing) this equipment is paid for by all Idaho Power customers, with an offsetting revenue credit for the amounts collected through the O&M charge assessed to QF interconnections.

REQUEST FOR PRODUCTION NO. 20: Provide an accounting of all the payments made by the Magic Reservoir Hydroelectric to Idaho Power under Schedule 72 organized chronologically for each month under its energy sales agreement and/or Schedule 72 for the QF at the Magic Reservoir Hydroelectric Plant.

RESPONSE TO REQUEST FOR PRODUCTION NO. 20: Please see the attached Excel spreadsheet for all payments made by Magic Reservoir Hydroelectric to Idaho Power under Schedule 72 for the Magic Reservoir Hydroelectric Plant. Please note that the dates included in the attachment are the generation month that the O&M was assessed, not the dates the payments were made.

The Response to this Production Request is sponsored by Aubrae Sloan, Accounting Manager, Idaho Power Company.

DATED at Boise, Idaho, this 16th day of May 2018.

Attorney for Idaho Power Company

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that on this 16th day of May 2018 I served a true and correct copy of IDAHO POWER COMPANY'S ANSWERS AND RESPONSES TO J.R. SIMPLOT'S FIRST INTERROGATORIES, REQUESTS FOR ADMISSION, AND REQUESTS FOR PRODUCTION TO IDAHO POWER COMPANY upon the following named parties by the method indicated below, and addressed to the following:

Commission Staff

Edith L. Pacillo Deputy Attorney General Idaho Public Utilities Commission 472 West Washington (83702) P.O. Box 83720 Boise, Idaho 83720-0074

J. R. Simplot Company

Peter J. Richardson Gregory M. Adams RICHARDSON ADAMS, PLLC 515 North 27th Street (83702) P.O. Box 7218 Boise, Idaho 83707

Dr. Don Reading 6070 Hill Road Boise, Idaho 83703

Idahydro and Shorock Hydro, Inc.

C. Tom Arkoosh ARKOOSH LAW OFFICES 802 West Bannock Street, Suite 900 P.O. Box 2900 Boise, Idaho 83701

Renewable Energy Coalition

J. Kahle Becker Attorney at Law 223 North 6th Street, Suite 325 Boise, Idaho 83702 X Hand Delivered U.S. Mail Overnight Mail FAX X Email <u>edith.pacillo@puc.idaho.gov</u>

 Hand Delivered

 X U.S. Mail

 Overnight Mail

- ____Overnig
 - ____FAA X Email neter@r
- X Email <u>peter@richardsonadams.com</u> greg@richardsonadams.com
- ____Hand Delivered
- X_U.S. Mail
- ____Overnight Mail
- ____FAX
- X Email dreading@mindspring.com
 - ____Hand Delivered
- X U.S. Mail
- ____Overnight Mail

____FAX

- X Email tom.arkoosh@arkoosh.com
- ____Hand Delivered
- X_U.S. Mail
- ____Overnight Mail

____FAX

X Email kahle@kahlebeckerlaw.com

Irion Sanger SANGER LAW, P.C. 1117 SW 53rd Avenue Portland, Oregon 97215 Hand Delivered X U.S. Mail Overnight Mail FAX X Email irion@sanger-law.com

owell

Kimberly Towell, Executive Assistant